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1 The vectorsa, b, c andd in >3 are given by

a =
`

2
−1

1

a
, b =

`
1
1
1

a
, c =

`
0
1

−1

a
and d =

`
3

−2
0

a
.

Show that�a, b, c� is a basis for>3. [3]

Expressd in terms ofa, b andc. [2]

2 Show that the difference between the squares of consecutiveintegers is an odd integer. [1]

Find the sum ton terms of the series

3

12 × 22 + 5

22 × 32 + 7

32 × 42 +à + 2r + 1

r2�r + 1�2 +à
and deduce the sum to infinity of the series. [5]

3 It is given thatφ�n� = 5n�4n + 1� − 1, for n = 1, 2, 3,à . Prove, by mathematical induction, thatφ�n�
is divisible by 8, for every positive integern. [7]

4 The curveC has cartesian equation
�
x2 + y2�2 = 2a2xy, wherea is a positive constant. Show that the

polar equation ofC is r2 = a2 sin 21. [3]

SketchC for −0 < 1 ≤ 0. [2]

Find the area enclosed by one loop ofC. [2]

5 State the sum of the seriesÏ + Ï2 + Ï3 +à + Ïn, for Ï ≠ 1. [1]

By letting Ï = cos1 + i sin1, show that

cos1 + cos 21 + cos 31 +à + cosn1 = sin1
2n1

sin1
21

cos1
2�n + 1�1,

where sin1
21 ≠ 0. [7]

6 The curveC has parametric equations

x = et − 4t + 3, y = 8e
1
2t

, for 0≤ t ≤ 2.

(i) Find, in terms of e, the length ofC. [5]

(ii) Find, in terms of0 and e, the area of the surface generated whenC is rotated through 20 radians
about thex-axis. [5]
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7 The curveC has parametric equations

x = sint, y = sin 2t, for 0≤ t ≤ 0.

Find
d2y

dx2 in terms oft. [5]

Hence, or otherwise, find the coordinates of the stationary points onC and determine their nature.
[5]

8 It is given that, is an eigenvalue of the non-singular square matrixA, with corresponding eigenvector
e. Show that,−1 is an eigenvalue ofA−1 for whiche is a corresponding eigenvector. [2]

Deduce that, + ,−1 is an eigenvalue ofA + A−1. [1]

It is given that 1 is an eigenvalue of the matrixA, where

A =
` 2 0 1
−1 2 3

1 0 2

a
.

Find a corresponding eigenvector. [2]

It is also given that

`
0
1
0

a
and

`
1
2
1

a
are eigenvectors of the matrixA. Find the corresponding eigenvalues.

[2]

Hence find a matrixP and a diagonal matrixD such that

�
A + A−1�3 = PDP−1. �4�

9 Using the substitutionu = cos1, or any other method, findÓ sin1 cos21 d1. [1]

It is given thatIn = Ó
1
20

0
sinn1 cos21d1, for n ≥ 0. Show that, forn ≥ 2,

In = n − 1
n + 2

In−2. �5�

Hence find the exact value ofÓ
1
20

0
sin41 cos21d1. [4]

10 Find the particular solution of the differential equation

d2x

dt2 + 0.16
dx
dt

+ 0.0064x = 8.64+ 0.32t,

given that whent = 0, x = 0 and
dx
dt

= 0. [10]

Show that, for large positivet,
dx
dt

≈ 50. [2]
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11 Answer onlyone of the following two alternatives.

EITHER

Express
2x2 − x + 5

x2 − 1
in the form 2+ A

x − 1
+ B

x + 1
, whereA andB are integers to be found. [3]

The curveC has equationy = 2x2 − x + 5

x2 − 1
. Show that there are two distinct values ofx for which

dy
dx

= 0. [4]

SketchC, stating the equations of the asymptotes and giving the coordinates of any points of
intersection with the coordinate axes and with the asymptotes. You do not need to find the coordinates
of the turning points. [7]

OR

With respect to an originO, the pointA has position vector 4i − 2j + 2k and the plane�1 has equation

r = �4+ , + 3-�i + �−2+ 7, + -�j + �2+ , − -�k,

where, and- are real. The pointL is such that
−−→
OL = 3

−−→
OA and�2 is the plane throughL which is

parallel to�1. The pointM is such that
−−→
AM = 3

−−→
ML.

(i) Show thatA is in �1. [1]

(ii) Find a vector perpendicular to�2. [2]

(iii) Find the position vector of the pointN in �2 such thatON is perpendicular to�2. [5]

(iv) Show that the position vector ofM is 10i − 5j + 5k and find the perpendicular distance ofM
from the line throughO andN, giving your answer correct to 3 significant figures. [6]
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